Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Interferon Cytokine Res ; 42(9): 482-492, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35900274

RESUMO

Colorectal carcinoma is the leading cause of cancer-related death. Previously we have shown that tumor suppressor single immunoglobulin interleukin-1-related receptor (SIGIRR) is frequently inactivated in human colorectal cancer by the increased expression of a novel SIGIRR isoform (SIGIRRΔE8). SIGIRRΔE8 showed increased retention in the cytoplasm and loss of complex glycan modification compared to the full-length SIGIRR. Now we found that the arginine residues located in the C-terminus of SIGIRRΔE8 serve as an endoplasmic reticulum retention signal and are required for resident protein ribophorin 1 (RPN1) interaction. In addition, we found that SIGIRRΔE8 exerts a direct impact on cell metabolism through interaction with the adenosine triphosphate synthase in the colorectal cancer cells. SIGIRRΔE8 expression promoted the metabolic shift through upregulation of mammalian target of rapamycin signaling pathway and dysregulation of mitochondrial function to promote survival and proliferation of colon cancer cells in xenograft model.


Assuntos
Neoplasias do Colo , Receptores de Interleucina-1/metabolismo , Trifosfato de Adenosina/metabolismo , Arginina/metabolismo , Neoplasias do Colo/patologia , Humanos , Imunoglobulinas/metabolismo , Interleucina-1 , Redes e Vias Metabólicas , Serina-Treonina Quinases TOR/metabolismo
2.
Int J Mol Sci ; 23(9)2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35563494

RESUMO

The term "nanosilica" refers to materials containing ultrafine particles. They have gained a rapid increase in popularity in a variety of applications and in numerous aspects of human life. Due to their unique physicochemical properties, SiO2 nanoparticles have attracted significant attention in the field of biomedicine. This study aimed to elucidate the mechanism underlying the cellular response to stress which is induced by the exposure of cells to both biogenic and pyrogenic silica nanoparticles and which may lead to their death. Both TEM and fluorescence microscopy investigations confirmed molecular changes in cells after treatment with silica nanoparticles. The cytotoxic activity of the compounds and intracellular RNS were determined in relation to HMEC-1 cells using the fluorimetric method. Apoptosis was quantified by microscopic assessment and by flow cytometry. Furthermore, the impact of nanosilica on cell migration and cell cycle arrest were determined. The obtained results compared the biological effects of mesoporous silica nanoparticles extracted from Urtica dioica L. and pyrogenic material and indicated that both types of NPs have an impact on RNS production causing apoptosis, necrosis, and autophagy. Although mesoporous silica nanoparticles did not cause cell cycle arrest, at the concentration of 50 µg/mL and higher they could disturb redox balance and stimulate cell migration.


Assuntos
Nanopartículas , Dióxido de Silício , Apoptose , Células Endoteliais , Humanos , Nanopartículas/química , Necrose , Dióxido de Silício/química
3.
Cytometry A ; 99(12): 1230-1239, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34110091

RESUMO

It is expected that the subnuclear localization of a protein in a fixed cell, detected by microscopy, reflects its position in the living cell. We demonstrate, however, that some dynamic nuclear proteins can change their localization upon fixation by either crosslinking or non-crosslinking methods. We examined the subnuclear localization of the chromatin architectural protein HMGB1, linker histone H1, and core histone H2B in cells fixed by formaldehyde, glutaraldehyde, glyoxal, ethanol, or zinc salts. We demonstrate that some dynamic, weakly binding nuclear proteins, like HMGB1 and H1, may not only be unexpectedly lost from their original binding sites during the fixation process, but they can also diffuse through the nucleus and eventually bind in nucleoli. Such translocation to nucleoli does not occur in the case of core histone H2B, which is more stably bound to DNA and other histones. We suggest that the diminished binding of some dynamic proteins to DNA during fixation, and their subsequent translocation to nucleoli, is induced by changes of DNA structure, arising from interaction with a fixative. Detachment of dynamic proteins from chromatin can also be induced in cells already fixed by non-crosslinking methods when DNA structure is distorted by intercalating molecules. The proteins translocated during fixation from chromatin to nucleoli bind there to RNA-containing structures.


Assuntos
Núcleo Celular , Cromatina , Núcleo Celular/metabolismo , Cromossomos/metabolismo , DNA/metabolismo , Ligação Proteica
4.
FASEB J ; 33(2): 2301-2313, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30260704

RESUMO

DNA lesions induce recruitment and accumulation of various repair factors, resulting in formation of discrete nuclear foci. Using superresolution fluorescence microscopy as well as live cell and quantitative imaging, we demonstrate that X-ray repair cross-complementing protein 1 (XRCC1), a key factor in single-strand break and base excision repair, is recruited into nuclear bodies formed in response to replication-related single-strand breaks. Intriguingly, these bodies are assembled immediately in the vicinity of these breaks and never fully colocalize with replication foci. They are structurally organized, containing canonical promyelocytic leukemia (PML) nuclear body protein SP100 concentrated in a peripheral layer, and XRCC1 in the center. They also contain other factors, including PML, poly(ADP-ribose) polymerase 1 (PARP1), ligase IIIα, and origin recognition complex subunit 5. The breast cancer 1 and -2 C terminus domains of XRCC1 are essential for formation of these repair foci. These results reveal that XRCC1-contaning foci constitute newly recognized PML-like nuclear bodies that accrete and locally deliver essential factors for repair of single-strand DNA breaks in replication regions.-Kordon, M. M., Szczurek, A., Berniak, K., Szelest, O., Solarczyk, K., Tworzydlo, M., Wachsmann-Hogiu, S., Vaahtokari, A., Cremer, C., Pederson, T., Dobrucki, J. W. PML-like subnuclear bodies, containing XRCC1, juxtaposed to DNA replication-based single-strand breaks.


Assuntos
Núcleo Celular/metabolismo , Quebras de DNA de Cadeia Simples , Replicação do DNA , Proteína da Leucemia Promielocítica/metabolismo , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/metabolismo , Antígenos Nucleares/metabolismo , Autoantígenos/metabolismo , Células Cultivadas , Reparo do DNA , Células HeLa , Humanos , Complexo de Reconhecimento de Origem/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo , Domínios Proteicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...